A simple anisotropic mesh-refinement strategy for triangular elements in 2D

نویسنده

  • Fredrik Larsson
چکیده

A novel approach to anisotropic mesh-refinement of linear triangular elements in the finite element method is proposed. Using the method of solving a hierarchically refined dual problem in the a posteriori error analysis, indicators for edge refinement, rather than element refinement, can be obtained. A complete adaptive strategy is presented and illustrated by some numerical examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesh Adaptation and Discrete Maximum Principle for 2D Anisotropic Diffusion Problems

Finite element method is widely used to solve diffusion problems. For anisotropic problem, the numerical solution may violate the discrete maximum principle (DMP) even if the triangular mesh satisfies acute type condition. We derive the conditions for a triangular mesh such that the obtained solution satisfies DMP. We also develop the strategy to adapt a given mesh so that the solution is impro...

متن کامل

Finite element mesh generation and adaptive meshing

This review paper gives a detailed account of the development of mesh generation techniques on planar regions, over curved surfaces and within volumes for the past years. Emphasis will be on the generation of the unstructured meshes for purpose of complex industrial applications and adaptive refinement finite element analysis. Over planar domains and on curved surfaces, triangular and quadrilat...

متن کامل

A nonconforming combination of the finite element and volume methods with an anisotropic mesh refinement for a singularly perturbed convection-diffusion equation

In this paper we formulate and analyze a discretization method for a 2D linear singularly perturbed convection-diffusion problem with a singular perturbation parameter ε. The method is based on a nonconforming combination of the conventional Galerkin piecewise linear triangular finite element method and an exponentially fitted finite volume method, and on a mixture of triangular and rectangular...

متن کامل

Anisotropic Mesh Refinement: The Conditioning of Galerkin Boundary Element Matrices and Simple Preconditioners

In this paper we obtain upper and lower bounds on the spectrum of the stiffness matrix arising from a finite element Galerkin approximation (using nodal basis functions) of a bounded, symmetric bilinear form which is elliptic on a Sobolev space of real index m ∈ [−1, 1]. The key point is that the finite element mesh is required to be neither quasiuniform nor shape regular, so that our theory al...

متن کامل

On Adaptive Mesh Generation in Two-Dimensions

This work considers the effectiveness of using anisotropic coordinate transformation in adaptive mesh generation. The anisotropic coordinate transformation is derived by interpreting the Hessian matrix of the data function as a metric tensor that measures the local approximation error. The Hessian matrix contains information about the local curvature of the surface and gives guidance in the asp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012